

Fire Protection Products

November 7, 1996

Mr. Randy Brown
Peak Seals, Inc.
15926 Cypress North Houston, Ste. 100
P. O. Box 99
Cypress, TX 77429
Fax: (713) 256-2694

Dear Randy:

As I understand, you have some questions regarding the replacement of CP 25N/S Caulk with CP 25WB+ Caulk for nuclear applications with the InteramTM mat and penetration seals.

I have attached information on shelf life, radiation data, and Certificate of Conformance. Based on the above information and the latest testing at Omega Point Laboratories, the CP 25WB+ Caulk is a replacement for CP 25N/S Caulk.

Reviewed by: 2MH A1581

Regards,

Tom Thoreson

Technical Service

TT/ks

Attachments

Eire Protection Products

TECHNICAL BULLETIN

Shelf Life Requirements for the following 3M Products

3M Interam™ Sheet and Fire Barrier

These 3M products do not have a shelf life requirement when stored indoors.

- Fire Barrier CS-195+ Composite Sheet
- Fire Barrier FS-195+ Wrap/Strip
- Fire Barrier Moldable Putty+
- Fire Barrier Plastic Pipe Devices
- Interam™ E-50/E-5 Series Mat
- Interam[™] T-49 Tape
- Interam[™] T-65 Tape

3M Fire Barrier and Interam™ Caulks

3M Fire Barrier CP 25N/S (No Sag) Caulk has a shelf life of one (1) year from the date of packaging when stored below 27°C (80°F).

3M Fire Barrier CP 25S/L (Self Leveling) Caulk has a shelf life of one (1) year from the date of packaging when stored below 27°C (80°F).

3M Fire Barrier CP 25WB+ (Water Based) Caulk has a shelf life of one (1) year from the date of packaging when stored above 4°C (40°F) and below 27°C (80°F).

3M InteramTM FireDamTM 150 Caulk has a shelf life of one (1) year from the date of packaging when stored above 4°C (40°F) and below 27°C (80°F).

The shelf life on the caulks affects ease of application and not fire protection properties. Useful life after application is forty (40) years.

The code to determine the packaging date is:

CS-195+ Composite Sheet

Example: 3011 R

3 = 1993 (Last Digit of Year) 011 = Cumulative Lot Number

R = Manufacturing Plant

Nuclear Reactor Laboratory The University of Michigan

Ford Nuclear Reactor
Phoenix Memorial Laboratory
2301 Bonisteel Boulevard
Ann Arbor, Michigan 48109-2100
(313) 764-6220

CERTIFICATE OF COMPLIANCE

This is to certify that 3M Company samples designated FS-195+, CP25WB+, and MPP-1 (moldable putty) were irradiated at the Ford Nuclear Reactor, University of Michigan, in the facility's 18,000 curie cobalt-60 gamma irradiator to the following average exposures.

FS-195+ Sample <u>Number</u>	CP25WB+ Sample <u>Number</u>	MPP-1 Sample <u>Number</u>	Dose Rate (rad/hr)	Irradiation Time (hr)	Cumulative Dose (rad)
1-3	1-3	1-3	13,934	75	1.05x10 ⁶
4-6	4-6	46	73,916	75	5.54x106
7-9	7-9	7-9	145,934	75	1.09x107
<u>-12</u>	10-12	10-12	670,917	75	5.03x107
13-15	13-15	13-15	273,270	368	1.01x108
16-18	16-18	16-18	2715360	740	2.01x108
19-21	19-21	Unirradis	ted		

Gamma dose rates were measured with a Reuter Stokes ion chamber, model C4-1606-207, serial number Z8943, that was calibrated against an NIST source on May 8, 1989.

The samples showed no visible indication of physical deterioration. They increased considerably in stiffness and rigidity and showed some discoloration.

June 22, 1993

Reed R. Burn, Manager Ford Nuclear Reactor

Read R Aun

Date

3M

* CERTIFICATE OF CONFORMANCE *

DESCRIPTION: 3M Brand Fire Barrier CP25 WB+ Caulk

This product was tested to ASTM standards:

ASTM E119 Fire Tests Of Building Construction and Materials.

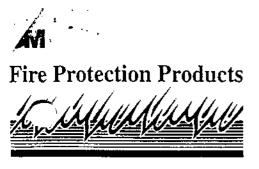
ASTM E814 Fire Tests Of Through-Penetration Fire Stops.

ASTM E84 Surface Burning Characteristics Of Building Materials.

This material is classified and tested by Underwriters Laboratories Inc. in the following categories: U.L. 1479 and U.L. 263

Fill, Void or Cavity Material for use in Through-Penetration Firestop Systems for a 1-4 hour fire rating. Refer to <u>U.L. Fire</u>
Resistance <u>Directory</u> for systems classified.

The surface burning characteristics are (1/4" beads, 2" on center):
Flame Spread 5
Smoke Development 0


This product is tested according to 3M Standard Number GP-54 and meets product requirements and complies with NFPA 101 and NFPA 70. This product contains no asbestos or PCB's.

This product conforms to the requirements of Environmental Protective Agency (EPA) Regulation No. 40 C.F.R. Part 61, Subpart M, Section 61.148.

Pallet Serial No.	
Customer P.O. No.	
Invoice No.	
Lot No.	
3M Part No.	
Quantity	
Shelf Life	

W Hack Mey
Quality Manager
or designee

11-7-96 Date

March 6, 1997

To: Users of 3M Fire Barrier Caulk CP 25N/S

3M Fire Barrier CP 25N/S Caulk was developed as a fire protective sealant for the Penetration Seal System, the Joint Treatment System, and Electrical Raceway System markets for the commercial and nuclear industry. 3M Fire Barrier CP 25N/S Caulk was used as a cold and fire seal for penetrations through fire rated assemblies for Electrical Protective System. It was used to provide a heat seal where straight line seams and termination occurred in the Protective Envelope System for electrical raceway protection.

3M Fire Barrier CP 25N/S Caulk was replaced with an improved version of caulk called 3M Fire Barrier CP 25WB Caulk, which was a water base version of the CP 25N/S caulk. CP 25WB+ Caulk has replaced the original version of CP 25WB Caulk and is now used to supplement the 3M Interam™ Electrical Raceway System as a cold and hot smoke seal for all penetrations or termination of the Interam™ E 50 Series Mat.

3M modified the CP 25WB Caulk to CP 25WB+ as an improved version of caulk for the commercial penetration sealing market. Underwriters Laboratories, Inc., has given 3M coverage of the CP 25WB+ as a replacement for CP 25WB Caulk (test reports and information attached).

Additionally the 3M Electrical Raceway Protection System was modified, fire tested, and qualified with a new caulk called FireDamTM 150. 3M's FireDamTM 150 Caulk has been qualified through the nuclear program with full-scale fire testing to the latest NRC standards as well as the original NRC standards. The FireDamTM 150 is a water base version of the InteramTM E 50 Series Mat product and is used to seal the mat system wherever straight line seams or openings occur in the mat system.

Electrical Raceway Systems manufactured and specified by 3M incorporate both the FireDamTM 150 Caulk and the CP25WB+ Caulk in conjunction with 3M's InteramTM Mat products. Fire testing for qualification to the NRC's current requirements does not incorporate the method for sealing penetrations as part of the fire test. The Electrical Raceway System is fire tested and qualified as a stand-alone item, and all penetration seals are based on fire testing of the seal itself.

CP 25WB+ Caulk would be used to seal around 3M's Composite Sheet System (CS-195+) as a smoke and heat seal only, and qualification would be based on 3M's listed performance as fire tested at U.L. (See attached comparison of CP 25N/S versus CP 25WB+.) Additional data is attached for other testing of the CP 25WB+ Caulk.

Fire Barrier CP 25WB+ Caulk

Product Data

FILL, VOID OR CAVITY MATERIALS CLASSIFIED BY UNDERWRITERS LABORATORIES, INC. 9 FOR USE IN THROUGH-PENETRATION FIRESTOP SYSTEMS (XHEZ). SEE CURRENT UL FIRE RESISTANCE DIRECTORY.

1. Product Description

3M Brand Fire Barrier CP 25WB+ Caulk is a premium elastomeric latex caulk designed for use as a one-part fire, smoke, noxious gas and water sealant. In addition, the unique intumescent property of this material (expands when heated) means that as cable or pipe insulation is consumed by fire, CP 25WB+ Caulk expands to naintain the penetration seal.

CP 25WB+ Caulk features superior adhesion strength, caulk rate and nosag application with expanded UL Classified fire protection systems plus a halogen-free formula.

3M Fire Barrier CP 25WB+ Caulk can be installed with a standard caulking gun, pneumatic pumping equipment or it can be easily applied with a putty knife or trowel. CP 25WB+ Caulk will bond to concrete, metals, wood, plastic and cable jacketing. No mixing is required.

CP 25WB+ Caulk Features

- Water Base: Easy clean up, no special handling, routine disposal.
- Intumescent: Expands when heated to seal around items consumed by
- Endothermic: Absorbs heat energy, releases chemically bound water.
- Thixotropic: Will not sag or run in overhead or vertical applications.
- Halogen-free.
- Fast dry: Tack-free in approximately 10-15 minutes.
- Paintable. (Best results obtained after 72 hour cure.)
- Minimal shrinkage.

- Brown color.
- Water seal: Seals against inadvertant water spills in the unexpanded state.
- High caulk rate: 1000 g/min, with 1/4 in, nozzle,
- Point contact allowed.
- Continuous Operating Temperature not to exceed 120°F (48°C).

2. Applications

Use to seal construction openings. blank openings and penetrating items against the passage of flame, noxious gas, smoke and water. Restores fire rated construction to original integrity. Also for use with 3M Brand Fire Barrier Penetrating Sealing Systems 7902 and 7904, FS-195+ Wrap/Strip and CS-195+ Composite Sheet.

3. Physical Properties

۸.[Product	Unit	Volume	Units/Ctn.	Wt/Ctn. Lbs. (Kg)
ſ	CP 25WB+	10.5 fl. oz. cartridge	19 cu. in,	12	12 (5,44)
	Caulk	1-gallon can (128 fl. oz.)	217 cu. in.	4	46 (20.8)
		5-gallon pail (640 fl. oz.)	1150 cu. in.	1	58 (26,3)

B. Volume Fill Guide for Core Drilled Holes

Metallic Pipe Size	Actual Pipe O.D.	Common Hole or Sleeve I.D.	Volume of Caulk Regio 1/2 in. Depth (in. ³)	Cartridges of Caulk	Gallons of Caulk
1 in. (35,4 mm)	1.32 in. (33,5 mm)	2 in. (50,8 mm)	0.89	.05	.004
2 in. (50,8 mm)	2.38 in. (60,4 mm)	3in. (76,2 mm)	1.31	.07	.006
3 in. (76,2 mm)	3.50 in. (88,9 mm)	4 in. (101,6 mm)	1.47	.08	.007
4 in. (101.6 mm)	4.50 in. (114,3 mm)	5 in. (127,0 mm)	1.87	.10	.009
5 in. (127,0 mm)	5.56 in. (141,2 mm)	6 in. (152,4 mm)	2.00	.11	.009
6 in. (152.4 mm)	6.63 in. (168,4 mm)	8 in. (203.2 mm)	7.87	.41	.04
8 in. (203.2 mm)	8.63 in. (219,2 mm)	10 in. (254,0 mm)	10.02	.53	.05
10 in. (254,0 mm)	10.75 in (273,0 mm)	12 in. (304,8 mm)	11.16	.59	.05
12 in. (304,8 mm)	12.75 in. (323,8 mm)	14 in. (355,6 mm)	13.05	.69	.06

- 1. Final caulk requirements may vary if criteria is different than stated in the application guide.
- 2. When the maximum annular space is 1-1/4 in. (31,8 mm) or less, a 1/2 in. (12,7 mm) minimum depth of CP 25WB+ Caulk is required.
- When the maximum annular space is larger than 1 in. (25,4 mm) or the pipe O.D. is greater than 12 in. (304,8 mm), a 1 in. (25,4 mm) minimum depth of CP 25WB+ Caulk is required.
- Damming materials, such as fiberglass, mineral wood or backer rod, may be used to support the CP 25WB+ Caulk.

4. Specifications

Product

The firestopping caulk shall be a one-part, intumescent, latex elastomer. The caulk shall be capable of expanding a minimum of 3 times at 1000°F. The material shall be thixotropic and be applicable to overhead, vertical and horizontal firestops. The caulk shall be listed by independent test agencies such as UL or FM and be tested to, and pass the criteria of, ASTM E 814 Fire Test, tested under positive pressure. It shall comply with the requirements of the NEC (NFPA-70), BOCAI, ICBO, SSBCCI and NFPA Code #101.

16050

Typically Spi	ecified Divisions
Division 7 07270	Thermal and Moisture Protection Firestopping
Division 13 13900	Special Construction Fire Suppression and Supervisory Systems
Division 15 15250 15300	Mechanical Insulation Fire Protection
Division 16	Electrical

Basic Electrical Materials and Methods

Product Data

3M Brand Fire Barrier CP 25N/S No-Sag CP 25S/L Self-Leveling Caulk

3M

FILL, VOID OR CAVITY MATERIALS CLASSIFIED BY UNDERWRITERS LABORATORIES INC? FOR USE IN THROUGH-PENETRATION FIRESTOP SYSTEM NOS. 33, 49, 61, 62, 63, 64, 65, 66, 90, 91, 92, 93, 94, 95, 97, 99, 102, 104, 105, 136, 137, 138, 139, 140, 147, 148, 149, 152, 159, 160, 167, 168, 169, 211, 212, and 233

90G9 SEE UL BUILDING MATERIALS DIRECTORY 3M PRODUCT NO. CP 25

1. Product Description

3M Brand Fire Barrier CP 25 Caulk is a synthetic elastomer designed for use as one-part fire, cold smoke, noxious gas or water sealants. In addition, the unique intumescent property of these materials (expanding when heated) means that as cable or pipe insulation is consumed by fire, 3M Fire Barrier expands to tightly seal the penetration.

CP 25 can be installed with a standard caulking gun, pneumatic pumping equipment, or can be applied with a putty knife. 3M Fire Barrier CP 25 Caulk will bond to concrete, metals, wood and plastic cable jacketing. No mixing is required, and only the amount necessary to fill the void need be used. No special training or skills are needed to obtain excellent results.

Fire Barrier Features

- Intumescent; expands when heated to seal around insulation consumed by fire for superior smoke and flame containment.
- CP 25N/S No-Sag will not sag or run in ceiling or vertical (wall) applications.
- CP 25S/L Self-Leveling will flow to fill around penetrations in floor applications and level for a uniform fill.

- One-part system; no mixing, no measuring, no mistakes during application.
- Fast drying; becomes tack-free in approximately thirty minutes.
- No waste; unused part of tube or can may be stored and saved for later application without special requirements.
- Seals against water penetration in unexpanded state.

2. Applications

Use to seal cracks, voids, or holes against flame, smoke and water penetration. Seal around conduit, cables, metal pipe, and insulated metal pipe penetrating fire walls or floors to prevent spread of fire. Use CP 25 Caulk in conjunction with 3M Brand Fire Barrier Penetration Sealing Systems 7902 and 7904, FS-195 Wrap/Strip or CS-195 Composite Sheet.

3. Physical Properties

Α.	Volume
	CP 25

Unit

10.5 fl. oz. tube

Gallon (128 fl. oz.)*

5-gallon (640 fl. oz.)

Volume

19 cu. inches 217 cu. inches* 1150 cu. inches

B. Volume Fill Guide for Core Drilled Holes

APPLICATION GUIDE FOR FILLING HOLES WITH 3M BRAND CP 25 CAULK

	;		Volume of		
Metallic Pipe Size	Actual Pipe O.D.	Common Hole or Sieeve I.D.	CP 25 Caulk Req'd 1/2" Depth (in ³)	Cartridges of CP 25 Caulk	Gallons of CP 25 Caulk
1" (25.4 mm)	1.32" (33.5 mm)	2" (50.8 mm)	.89	.05	.004
2" (50.8 mm)	2.38" (60.5 mm)	3" (76.2 mm)	1.31	.07	.006
3" (76.2 mm)	3.50" (88.9 mm)	4" (101.6 mm)	1.47	.08	.007
4" (101.6 mm)	4.50" (114.3 mm)	5" (127.0 mm)	1.87	.10	.009
5" (127.0 mm)	5.56" (141.2 mm)	6" (152.4 mm)	2.00	.11	.009
6" (152.4 mm)	6.63" (168.4 mm)	8" (203.2 mm)	7.87	.41	.04
8" (203.2 mm)	8.63" (219.2 mm)	10" (273.1 mm)	10.02	.53	.05
10" (254.0 mm)	10.75" (273.1 mm)	12" (304.8 mm)	11.16	.59	.05

Notes:

- 1. Final criteria for installation are dependent on penetrating item, opening size and annular space.
- 2. When the maximum annular space is 1" (25mm) or less, a 1/2" (13mm) minimum depth of CP 25 Caulk is required
- When the maximum annular space is greater than 1" (25mm), a 1" (25mm) minimum depth of CP 25 Caulk is required.
- 4. When the maximum annular space is greater than 2-1/2" (64mm), a 28 gauge minimum cover plate is required.
- Damming material, such as, fiberglass, mineral wool batt or polyethylene backer rod can be used to support the caulk.

^{*}Available in CP 25N/S only.

UL System CAJ-1044 319

333 Pfingsten Road Northbrook, Illinois 60062-203-(708) 272-8800 FAX No. (708) 272-8129 MCI Mail No. 254-3343 Cable ULINC NORTHBROGK. _ Telex No. 6502543343

Underwriters Laboratories Inc.

November 6, 1992

Minnesota Mining and Manufacturing Co. Mr. Richard R. Licht 207-1S 3M Center St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject:

Fire Test Investigation Of Through-Penetration Firestop Systems For Nominal 12 in. Diameter Steel Pipes In A Nominal 2-1/2 In. Thick Concrete

Slab Floor Assemblies

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on September 3, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-151). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The floor assembly consisted of a nominal 56 by 70 by 2-1/2 in. thick steel-reinforced lightweight concrete slab containing nominal 13-1/4 in. and 13-1/2 in. diameter through openings to accommodate the through-penetrating items, as shown in ILL. 1. A nominal 12 in. diameter seam-welded steel pipe (0.145 in. wall thickness) was installed in each of the through openings. Each pipe was capped on the exposed side of the assembly with a welded steel plate. Each pipe was 4 ft, 2-1/2 in. long and was installed to project 12 in. below and 36 in. above the exposed and unexposed surfaces of the assembly. The nominal 12 in. diameter steel pipe in each opening was offset such that it was in point contact with one edge of the opening and such that a nominal 1-1/4 in. or 1-1/2 in. annular space was present on the opposite side.

The firestop system for each through opening consisted of a nominal 1/2 in. depth of Type CP-25 W/B+ caulk fill material installed flush with the top surface of the floor. The friction-fitted form for the fill material consisted of firmly-packed 4 pcf density mineral-wool batt insulation. A nominal 2 in. depth of packing material was installed in Opening A and a nominal 1 in. depth of packing material was installed in Opening B.

WL System Nos. CAJ-1044 319 Old

333 Pfingsten Road Northbrook, Illinois 60062-2034 (708) 272-8800 FAX No. (708) 272-8129 MCI Mail No. 254-3343 Cable ULINC NORTHBROCK _ Teiex No. 6502543343

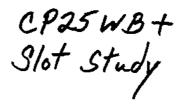
Underwriters Laboratories Inc. 4

November 6, 1992

Minnesota Mining and Manufacturing Co. Mr. Richard R. Licht 207-1S 3M Center St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject: Fir


Fire Test Investigation Of Through-Penetration Firestop Systems For Steel Pipes In A Nominal 4-1/2 in. Thick Concrete Slab Floor Assembly

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on September 2, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-149). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The floor assembly consisted of a nominal 56 by 70 by 4-1/2 in. thick steel-reinforced lightweight concrete slab containing nominal 6, 8, 10 and 12 in. diameter core-drilled openings to accommodate the through-penetrating items, as shown in ILL. 1. A nominal 4 in. diameter steel EMT was installed in the 6 in. diameter through opening. Nominal 6, 8 and 10 in. diameter seam-welded steel pipes with wall thicknesses corresponding to Schedule 10 steel pipe were installed in the 8, 10 and 12 in. diameter through openings, respectively. Each penetrating item was 4 ft, 4-1/2 in. long and was installed to project 12 in. below and 36 in. above the exposed and unexposed surfaces of the assembly. Each pipe or EMT was offset in the through opening such that it was in point contact with the edge of the opening on one side and such that a nominal 1-1/2 to 1-3/4 in. annular space was present on the opposite side.

The firestop system for each pipe and EMT consisted of a nominal 1/2 in. thickness of Type CP-25 WB+ caulk fill material installed flush with the top surface of the floor. The friction-fitted form for the fill material consisted of a cellular polyethylene backer rod. Prior to the fire test, each pipe was capped on the exposed side of the assembly with a welded steel plate.

333 Pfingsten Road
Northbrook, Illinois 60062-209(708) 272-8800
FAX No. (708) 272-8129
MCI Mail No. 254-3343
Cable ULINC NORTHBROOK, iL
Telex No. 6502543343

(ŲL)

Underwriters Laboratories Inc. 4

November 6, 1992

Minnesota Mining and Manufacturing Co.

Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject:

Preliminary Fire Test Investigation Of Joint Treatment Systems For Nominal 2 in., 4 in. And 6 in. Wide Construction Gaps In Nominal 4-1/2 in.

Thick Concrete Slab Floor Assemblies

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on September 1, 2 and 3, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-144, -147 and -150, respectively.). The fire exposure and hose stream tests were conducted in general accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The nominal 56 by 70 in. floor assembly for each test consisted of either two or three nominal 56 in. long by 4-1/2 in. thick steel-reinforced lightweight concrete slabs installed to provide nominal 2 in., 4 in. or 6 in. wide construction gaps.

The joint treatment system for the construction gap(s) in each test assembly consisted of a nominal 3 in. depth of tightly-packed mineral-wool batt insulation covered with a nominal 1/4 in., 1/2 in. or 1 in. depth of Type CP-25 WB+ caulk, flush with the top surface of the concrete slabs. The details of Test Assembly Nos. 1, 2 and 3 are shown in ILLS. 1, 2 and 3, respectively, and are summarized in the following table:

Test Assembly No.	Joint Opening Width	Type CP-25 WB+ Caulk Depth
l (3M FT #92-144)	6 in.	l in.
2	4 in.	1/2 in.
(3M FT #92-147)	4 in.	1 in.
3	2 in.	1/4 in.
(3M FT #92-150)	2 in.	1/2 in.

Page 2 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

Prior to each fire test, the humidity of the concrete slabs was measured and recorded. For each of the three fire tests, the measured humidity of the concrete was in excess of 90 percent.

Each floor assembly was subjected to a 180 min fire exposure with the furnace temperatures controlled in accordance with the Standard, ANSI/UL 1479 (ASTM E814). The average furnace temperature at each 10 min time interval during each fire exposure test is shown in the following table:

	Temperature, °F	Average	Furnace Tempera	ture, °F
Test Time,	(ANSI/UL 1479	T.A.	T.A.	T.A.
min	Time-Temp Curve)	No. 1	No. 2	<u>No. 3</u>
10	1300	1150	1188	1153
20	1462	1323	1335	1297
30	1550	1421	1426	1389
40	1613	1517	1510	1464
50	1661	1574	1566	1535
60	1700	1621	1621	1626
70	1735	1663	1667	1662
80	1765	1708	1700	1692
90	1792	1739	1727	1717
100	1815	1772	1752	1737
110	1835	1800	1777	1755
120	. 1850	1824	1795	1767
130	1862 .	1846	1813	1783
140	1875	1857	1828	1795
150	1888	1876	1846	1807
160	1900 ,	1889	1860	1820
170	1912	1897	1873	1829
180	. 1925	1907	1884	1838

Within 30 seconds after initiation of each fire exposure test, the furnace pressure with respect to atmospheric pressure was positive. The furnace pressure remained positive at 0.015 to 0.035 in. of water, as measured 3/4 in. below the exposed surface of the concrete floor slabs, throughout each fire exposure test.

No flaming or through openings developed in the joint treatment systems during any of the three fire exposure tests.

Page 3 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

The temperatures on the unexposed side of Test Assembly No. 1 were measured by 16 thermocouples located as shown in ILL. 1. The temperatures on the unexposed side of Test Assembly No. 2 were measured by 24 thermocouples located as shown in ILL. 2. The temperatures on the unexposed side of Test Assembly No. 3 were measured by 20 thermpcouples located as shown in ILL. 3. The time at which the limiting temperature for the Assembly Rating (325°F rise above initial starting temperature at hottest point) was reached on each joint treatment system in the three test assemblies is shown in the following table:

Test Assembly	Joint Width	Caulk Depth	Time To Limiting Temp, min
1	6 in.	l in.	154 (T.C. No. 12)
2	4 in. 2 in.	1/2 in. 1 in.	150 (T.C. No. 11) N.R.
3	2 in.	1/4 in. 1/2 in.	135 (T.C. No. 9) 157 (T.C. No. 16)

N.R. - Not Reached

The temperatures measured on the unexposed side of Test Assembly Nos. 1, 2 and 3 at each 10 min time interval during the fire exposure tests are shown in Appendix A, B and C, respectively.

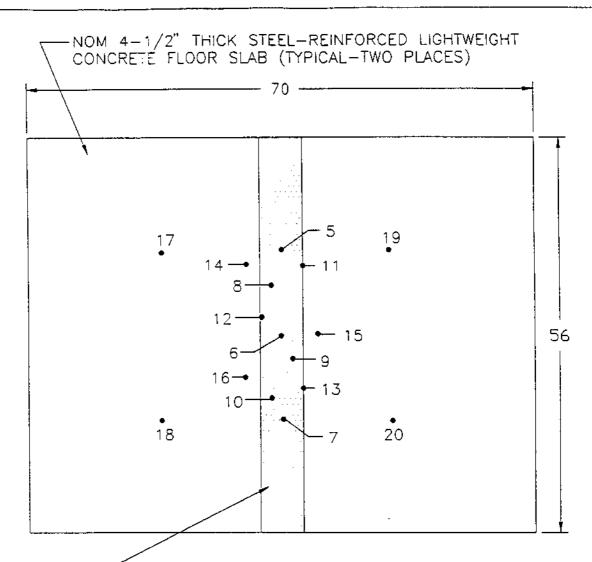
Immediately following each fire exposure test, the sample was removed from the furnace and placed in a steel support rack which pivoted the sample approximately 90 degrees such that the exposed and unexposed surfaces of the sample, as fire tested, were oriented vertically like a wall assembly. The hose stream tests were each conducted in general accordance with the Standard, ANSI/UL 1479 (ASTM E814). Based on the 3 h fire exposure time, the joint treatment systems were subjected to the action of a 30

Page 4 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

psi hose stream applied for a duration of 1.5 s/ft² of exposed area. The hose stream was applied with a 1-1/8 in. diameter nozzle at a perpendicular distance of 20 ft from the center of the test assembly. The water stream was applied to the 27 ft² sample for 41 s and traversed the floor assembly and joint treatment systems. The 4 in. wide construction gap with the nominal 1/2 in. depth of caulk in Test Assembly No. 2 and the 2 in. wide construction gap with the nominal 1/4 in. depth of caulk in Test Assembly No. 3 each developed through openings during the hose stream test. No through openings developed in the remaining three joint treatment systems during the hose stream test.

The tests described herein were developmental in nature and were not intended for Classification purposes.

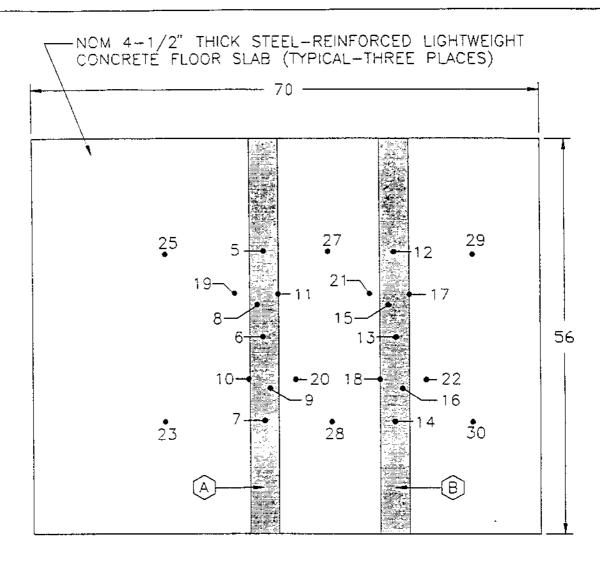
Very truly yours,


C. J. JOHNSON (Ext. 2649) Senior Engineering Associate Engineering Services

CJJ:per

Reviewed by:

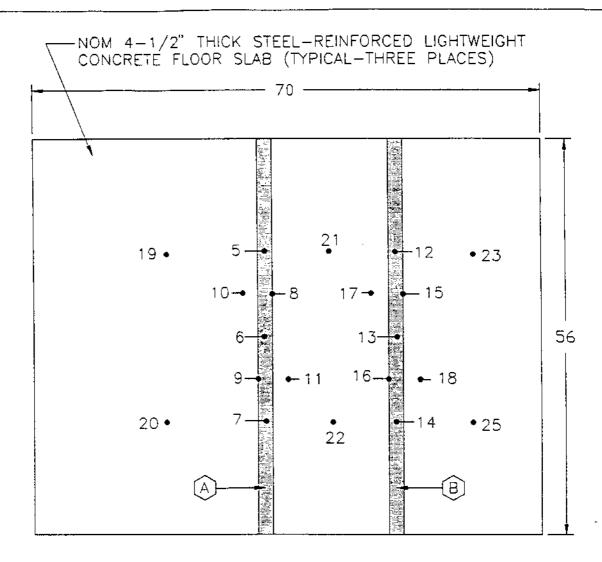
a contract to the safe


RICHARD N. WALKE (Ext. 3084) Engineering Group Leader Engineering Services

NCM 6" WIDE JOINT OPENING WITH JOINT TREATMENT SYSTEM CONSISTING OF NOM 1" DEPTH OF TYPE CP-25 WB+ CAULK, FLUSH WITH TOP OF SLABS, ATOP NOM 3" DEPTH OF 4 PCF MINERAL-WOOL BATT PACKING MATERIAL

T.C. NO.	LOCATION
5,6,7 8,9,10 11,12,13	ON CAULK AT CENTER OF JOINT WIDTH ON CAULK AT QUARTERPOINT OF JOINT WIDTH ON CAULK AT INTERFACE WITH CONCRETE
14,15,16 17-20	ON CONCRETE 2" FROM EDGE OF JOINT ON CONCRETE AWAY FROM JOINT

CONSTRUCTION DETAILS AND THERMOCOUPLE LOCATIONS



- A NOM 4" WIDE JOINT OPENING WITH JOINT TREATMENT SYSTEM CONSISTING OF NOM 1/2" DEPTH OF TYPE CP-25 WB+ CAULK, FLUSH WITH TOP OF SLABS, ATOP NOM 3" DEPTH OF 4 PCF MINERAL-WOOL BATT PACKING MATERIAL
- B NOM 4" WIDE JOINT OPENING WITH JOINT TREATMENT SYSTEM CONSISTING OF NOM 1" DEPTH OF TYPE ©P-25 WB+ CAULK, FLUSH WITH TOP OF SLABS, ATOP NOM 3" DEPTH OF 4 PCF MINERAL-WOOL BATT PACKING MATERIAL

T.C. NO. LOCATION

5,6,7,12,13,14 ON CAULK AT CENTER OF JOINT WIDTH 8,9,15,16 ON CAULK AT QUARTERPOINT OF JOINT WIDTH 10,11,17,18 ON CAULK AT INTERFACE WITH CONCRETE 19,20,21,22 ON CONCRETE 2" FROM EDGE OF JOINT 23,25,27-30 ON CONCRETE AWAY FROM JOINT

CONSTRUCTION DETAILS AND THERMOCOUPLE LOCATIONS

- A NOM 2" WIDE JOINT OPENING WITH JOINT TREATMENT SYSTEM CONSISTING OF NOM 1/4" DEPTH OF TYPE CP-25 WB+ CAULK, FLUSH WITH TOP OF SLABS, ATOP NOM 3" DEPTH OF 4 PCF MINERAL+WOOL BATT PACKING MATERIAL
- B NOM 2" WIDE JOINT OPENING WITH JOINT TREATMENT SYSTEM CONSISTING OF NOM 1/2" DEPTH OF TYPE CP-25 WB+ CAULK, FLUSH WITH TOP OF SLABS, ATOP NOM 3" DEPTH OF 4 PCF MINERAL-WOOL BATT PACKING MATERIAL

T.C.	NO.	LOCATION

5,6,7,12,13,14 ON CAULK AT CENTER OF JOINT WIDTH 8,9,15,16 ON CAULK AT INTERFACE WITH CONCRETE 10,11,17,18 ON CONCRETE 2" FROM EDGE OF JOINT 19-23,25 ON CONCRETE AWAY FROM JOINT

Page 5 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

A P P E N D I X A T E S T A S S E M B L Y NO. 1

(3M FT #92-144)

Test				Cemperat	cure, °F	ŗ		
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	5_	6	7	8	9	10	11	12
0	67	65	66	68	67	66	68	68
10	69	69	69	68	68	68	69	69
20	94	106	94	78	97	87	83	96
30	137	155	142	110	147	129	121	142
40	160	173	165	138	175	151	151	162
50	170	180	175	155	185	163	170	177
60	175	182	180	167	190	169	185	194
				-				
70	178	184	182	177	194	177	199	204
80	179	185	184	185	198	186	213	215
90	180	189	185	193	202	194	230	230
100	182	194	186	199	207	202	246	247
110	185	202	189	206	212	209	265	267
120	189	216	195	213	220	219	288	293
					220	417	200	2,5
130	198	231	207	222	233	232	315	321
140	209	249	217	233	251	241	341	346
150	221	281	234	248	281	269	367	382
160	235	317	257	268	317	300	390	408
170	255	351	289	293	352	332	411	433
180	281	379	324	320	379	357	430	456
		-,-			3,3	33 ,	150	150
Test		· · · · · · · · · · · · · · · · · · ·		Temperat		7		
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	<u>13</u>	14	<u> 15</u>	<u> 16</u>	<u> 17</u>	18_	19	20
0	65	66	67	67	68	67	6.8	68
10	68	68	69	68	69	68	69	69
20	81	77	89	86	81	81	86	84
30	105	97	130	128	116	113	116	122
40	125	110	166	163	139	144	143	157
50	134	117	187	186	145	168	161	184
60	142	128	222	204	154	190	174	203

Page 6 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

		<u>A</u> P P E	\overline{N} \overline{D} \overline{I} \overline{X}	<u>A</u>	(Cont.)			
70	151	142	222	217	171	203	184	214
80	160	144	235	230	174	217	195	229
90	169	147	244	247	183	223	219	238
100	178	157	265	265	233	238	248	248
110	186	163	291	286	259	262	281	267
120	203	175	325	316	288	289	322	297
130	287	191	359	351	320	320	364	323
140	304	201	388	384	352	353	393	331
150	343	217	418	420	381	389	425	3 57
160	367	233	443	450	406	412	450	378
170	387	251	467	479	430	435	472	401
180	407	260	488	505	452	458	493	431

Page 7 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

$\underline{\underline{A}} \ \underline{\underline{P}} \ \underline{\underline{P}} \ \underline{\underline{E}} \ \underline{\underline{N}} \ \underline{\underline{D}} \ \underline{\underline{I}} \ \underline{\underline{X}} \qquad \underline{\underline{B}}$ $\underline{\mathbf{T}} \ \underline{\mathbf{E}} \ \underline{\mathbf{S}} \ \underline{\mathbf{T}} \qquad \underline{\mathbf{A}} \ \underline{\mathbf{S}} \ \underline{\mathbf{S}} \ \underline{\mathbf{E}} \ \underline{\mathbf{M}} \ \underline{\mathbf{B}} \ \underline{\mathbf{L}} \ \underline{\mathbf{Y}}$ <u>NO. 2</u>

(3M FT #92-147)

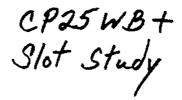
Test	Temperature, °F							
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	5	6	7	8	9	10	11_	12
0	73	73	73	73	73	73	73	73
10	78	77	75	76	74	75	75	73
20	120	105	95	100	90	94	91	80
30	155	130	116	148	114	122	122	103
40	155	132	145	153	138	151	145	122
50	175	157	144	154	140	157	161	131
60	191	162	146	105	143	145	175	147
70	202	167	151	158	149	149	192	152
80	211	171	162	162	155	158	212	158
90	222	176	175	179	161	166	231	163
100	234	185	187	193	168	175	252	166
110	252	200	199	206	178	184	273	170
120	280	217	211	217	187	194	298	173
130	315	243	223	235	195	207	331	177
140	353	281	240	267	205	226	366	183
150	391	325	270	315	220	252	39 9	192
160	424	- 362	309	360	240	284	427	200
170	453	393	345	394	258	391	454	206
180	477	410	373	419	280	453	477	216
Test		, 1		Pemperat	ure, °	?		
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
min	13	14	15	<u> 16</u>	<u>17</u>	18	_19_	_20_
0	72	72	72	72	73	72	73	75
10	74	73	74	73	74	74	74	75
20	95	80	92	83	87	91	90	88
30	142	103	149	109	141	119	128	111
40	167	128	171	129	144	129	144	128
50	175	140	161	145	155	143	163	149
60	179	148	163	160	165	167	149	165

Page 8 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

		<u>APPE</u>	N D I	<u>х</u> <u>в</u>	(Cont.	}		
70 80 90 100 110 120	182 186 190 195 201 209	155 160 165 170 176 186	165 184 189 193 198 205	170 176 177 180 184 189	173 183 191 201 213 231	187 202 217 234 249 257	196 216 236 258 285 318	177 181 191 214 232 240
130 140 150 160 170 180	217 228 242 264 290 320	191 196 202 205 212 220	213 225 240 253 267 278	196 203 209 216 228 248	253 280 311 342 372 398	291 322 355 378 384 394	357 393 425 454 482 507	286 312 335 362 379 387
Test				emperati				
Time, min	T.C. 21	T.C.	T.C. 23	T.C. _25	T.C.	T.C. 28	T.C. 29	T.C. 30
0	75	74	74	73	73	74	74	73
10 20 30 40 50	76 95 133 159 173	75 87 123 161 180 193	74 88 131 165 180 185	73 82 111 139 170 152	74 82 102 119 134 153	74 80 102 127 152 173	74 87 135 177 189 212	74 89 130 160 178 178
70 80 90 100 110	191 198 209 230 264 297	201 207 208 213 229 252	205 212 213 213 213 213	175 188 195 194 202 217	162 173 183 188 198 205	186 199 209 219 231 247	212 212 213 213 217 222	207 208 210 210 212 213
130 140 150 160 170 180	335 375 411 443 474 501	278 308 340 371 401 430	216 231 243 261 281 326	248 286 323 356 387 412	222 219 233 259 274 296	266 290 318 345 369 391	228 237 245 273 398 440	214 218 222 225 326 438

Page 9 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

A P P E N D I X C T E S T A S E M B L Y N O. 3


(3M FT #92-150)

Test			7	Cemperat	ture, °	7		
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	5	6		8	9	10_	11	12
0	70	69	69	70	70	72	70	70
10	73	73	73	74	74	73	74	72
20	97	97	97	101	98	92	101	85
30	127	159	153	162	159	127	145	129
40	137	185	176	186	186	162	177	168
50	140	190	178	192	192	187	189	180
60	142	192	183	196	204	207	206	185
70	148	196	182	202	218	224	222	190
80	150	198	184	214	238	244	243	194
90	152	207	189	227	257	266	265	199
100	154	218	194	243	278	294	293	205
110	158	232	200	263	307	326	332	212
120	159	250	209	285	342	361	366	222
130	161	275	. 227	315	376	397	398	236
140	166	307	260	344	412	431	430	256
150	173	338	299	369	437	463	455	285
160	181	. 366	336	394	461	492	480	320
170	189	392	369	418	486	520	503	352
180	200	415	385	440	507	546	522	377
Test				emperat		י		
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	13	14	<u>15</u>	<u> 16</u>	17	18_	19	20
. 0	69	69	70	70	70	70	71	72
10	71	71	71	71	71	72	71	73
20	84 -	79	85	87	87	89	83	86
30	135	116	121	138	120	131	111	119
40	164	150	152	166	147	123	131	156
50	180	166	138	181	159	129	140	185
60	186	175	143	194	156	140	153	209

(Cont'd)

Page 10 November 6, 1992 per/15496/ltr/R9700.oct L7935-/L8223-

Test				Cemperat				
Time,	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.	T.C.
<u>min</u>	<u>13</u>	<u>14</u>	_15_	16	<u> 17</u>	18	_19_	_20_
70	192	184	152	207	165	165	170	227
80	197	192	167	222	198	190	176	241
90	203	201	183	238	228	212	183	258
100	209	209	201	255	256	231	189	277
110	216	218	216	276	284	252	195	299
120	222	228	234	301	317	268	200	326
130	231	240	254	327	349	289	210	354
140	242	254	280	353	381	306	298	384
150	256	270	30 9	379	410	332	356	413
160	277	290	342	402	436	355	399	438
170	307	315	376	424	460	375	434	462
180	339	342	406	446	483	397	462	484
Test				Temi	peratur	e, °F		
Time,		T.C.		T.C.		T.C.		T.C.
min		21		_ 22		23		25
								
0		7 2		71		72		71
10		73		72		71		72
20		85		85		72		82
30		123		122		72		112
40		160	-	157	-	73		144
50		187		188		75		171
60		208		213		76		193
70		. 221		230		78		211
80		/ 231		244		80		228
90		244		259		79		244
100		257		273		80		260
110		274		291		82		278
120		296		314		81		298
130		324		346		83		319
140		358	•	378		85		347
150		387		406		85		347 376
160		412		431				3/6 401
170		434		451 454		85 85		401 424
180		454		475		85 87		
T00		404		4/3		0 /		447

333 Pfingsten Road Northbrook, Illinois 60062-309-(708) 272-8800 FAX No. (708) 272-8129 MCI Mail No. 254-3343 Cable ULINC NORTHBROOK, L Tetex No. 6502543343

٦Ļ

Underwriters Laboratories Inc. 4

November 6, 1992

Minnesota Mining and Manufacturing Co.

Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject:

Preliminary Fire Test Investigation Of Joint Treatment Systems For Nominal 2 in., 4 in. And 6 in. Wide Construction Gaps In Nominal 4-1/2 in.

Thick Concrete Slab Floor Assemblies

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on September 1, 2 and 3, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-144, -147 and -150, respectively.). The fire exposure and hose stream tests were conducted in general accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The nominal 56 by 70 in. floor assembly for each test consisted of either two or three nominal 56 in. long by 4-1/2 in. thick steel-reinforced lightweight concrete slabs installed to provide nominal 2 in., 4 in. or 6 in. wide construction gaps.

The joint treatment system for the construction gap(s) in each test assembly consisted of a nominal 3 in. depth of tightly-packed mineral-wool batt insulation covered with a nominal 1/4 in., 1/2 in. or 1 in. depth of Type CP-25 WB+ caulk, flush with the top surface of the concrete slabs. The details of Test Assembly Nos, 1, 2 and 3 are shown in ILLS. 1, 2 and 3, respectively, and are summarized in the following table:

Test Assembly No.	Joint Opening Width	Type CP-25 WB+ Caulk Depth
1 (3M FT #92-144)	6 in.	l in.
2	4 in.	1/2 in.
(3M FT #92+147)	4 in.	1 in.
3	2 in.	1/4 in.
(3M FT #92-150)	2 in.	1/2 in.

UL 560, CP25WB+ Cable Bundles, SLot 8×50 FT 92-76

September 2, 1992

Minnesota Mining and Manufacturing Co.

Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject: Fire Test Investigation Of Through-Penetration Firestop

System For Telecommunication Cable Bundles In Nominal 8 by 50 In. Opening In Nominal 2-1/2 In. Thick Concrete

Slab Floor Assembly

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on June 23, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-76). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The floor assembly consisted of a nominal 56 by 70 by 2-1/2 in. thick steel-reinforced lightweight concrete slab containing a nominal 8 in. by 50 in. rectangular through opening at its center to accommodate the through-penetrating items. Six bundles of telecommunication cables were installed in the through opening, as shown in ILL. 1. Each cable bundle was 4 ft, 2-1/2 in. long and was installed to project 12 in. below and 36 in. above the exposed and unexposed surfaces of the assembly.

The firestop system for the through opening was installed as described in Through-Penetration Firestop System No. 560 except that, instead of Type CP-25 W/B caulk, a nominal 1 in. depth of Type CP-25 W/B+ caulk fill material was used atop the nominal 1 in. depth of 4 pcf density mineral-wool batt packing material and the hanger straps with support strips.

The concrete slab used in the test assembly was cast approximately 131 days before the fire test was conducted. Prior to installation of the firestop systems, the concrete slab was subjected to low-level fire exposure to drive the free moisture from the slab. The relative humidity of the concrete was less than 75 percent at the time of the fire test. The caulk fill material was installed 86 days before the fire test was conducted.

UL 318, CP 25 WB+
Blank Openings
FT 92-73, 44,75

September 2, 1992

Minnesota Mining and Manufacturing Co.

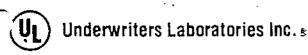
Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700

Subject:


Fire Test Investigation Of Through-Penetration Firestop Systems For "Blank" (Unpenetrated) Sleeved And Unsleeved Through Openings With Type CP-25 W/B And Type CP-25 W/B+ Caulk Fill Materials In Nominal 2-1/2 in. Thick Concrete Slab

Floor Assemblies

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on June 19, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-73, -74 and -75). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The floor for each test assembly consisted of a nominal 56 by 70 by 2-1/2 in. thick steel-reinforced lightweight concrete slab containing a nominal 4 in. diameter by 2-3/4 in. high Schedule 40 steel pipe sleeve, a nominal 6 in. diameter by 3 in. high Schedule 40 steel pipe sleeve, a nominal 4 in. diameter core-drilled through opening and a nominal 6 in. diameter core-drilled through opening. The nominal 4 in. and 6 in. diameter Schedule 40 steel pipe sleeves were each installed flush with the bottom surface of the floor slab such that the top of each sleeve projected 1/4 or 1/2 in. above the top surface of the floor slab, respectively.

September 2, 1992

UL 320-CP25 WB+ FT # 5 92-77, 79, 82, 83

. .

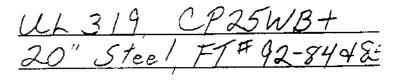
Minnesota Mining and Manufacturing Co.

Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NK13354, R9700


Subject:

Fire Test Investigation Of Through-Penetration Firestop Systems For Cable Bundles In Sleeved And Unsleeved Through Openings In Nominal 4-1/2 in.

Thick Concrete Slab Floor Assemblies

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on June 23, 24 and 25, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-77, -79, -82 and -83). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814). The floor for each test assembly consisted of a nominal 56 by 70 by 2-1/2 in. thick steel-reinforced lightweight concrete slab. The floor assemblies for Test Assembly Nos. 1 and 3.(3M FT #92 -77 and -82, respectively) each contained two nominal 6 in. diameter and two nominal 8 in. diameter core-drilled openings, as. shown in ILLS. 1 and 3. The floor assemblies for Test Assembly Nos. 2 and 4 (3M FT #92-79 and -83, respectively) each contained two nominal 6 in. diameter Schedule 40 PVC pipe sleeves and two nominal 8 in. diameter Schedule 40 steel pipe sleeves, as shown in ILL. 2. The PVC and steel sleeves in Test Assembly Nos. 2 and 4 were each installed to project approximately 1/4 in. above the top surface of the floor slab. The four through openings in each of the four test assemblies were filled with various quantities of various cable types, as shown in the following table:

Underwriters Laboratories Inc. .

September 2, 1992

Minnesota Mining and Manufacturing Co.

Mr. Richard R. Licht

207-1S 3M Center

St. Paul, MN 55144-1000

Our Reference: 92NKl3354, R9700

Subject:

Fire Test Investigation Of Through-Penetration Firestop System For Nominal 20 in. Diameter Steel Pipe In A Nominal 2-1/2 in. Thick Concrete

Slab Floor Assembly

Dear Mr. Licht:

The following is a Summary Letter Report of the fire exposure and hose stream tests conducted on June 25, 1992 at your fire test facility in Cottage Grove, MN (3M FT #92-84 and -85). The fire exposure and hose stream tests were conducted in accordance with the Standard, Fire Tests of Through-Penetration Firestops, ANSI/UL 1479 (ASTM E814).

The floor assembly consisted of a nominal 56 by 70 by 2-1/2 in. thick steel-reinforced lightweight concrete slab containing a nominal 22-1/2 in. diameter through opening at its center. A nominal 20 in. diameter Schedule 10 steel pipe was installed in the through opening as shown in ILL. 1. The pipe was capped on the exposed surface with a welded steel plate. The pipe was 4 ft, 2-1/2 in. long and was installed to project 12 in. below and 36 in. above the exposed and unexposed surfaces of the assembly. The nominal 20 in. diameter steel pipe was offset in the through opening such that it was in point contact with the edge of the opening on one side and such that a nominal 2-1/2 in. annular space was present on the opposite side.

The firestop system consisted of a nominal l in. thickness of Type CP-25 W/B+ caulk fill material installed flush with the top surface of the floor. The friction-fitted form for the fill material consisted of a cellular polyethylene backer rod.

Northbrook. Anois + 7081 272-8800 Merville, New York + (516) 271-6200

Santa Clara, California • (408) 985-2460

Research Triangle Park. North Carolina • •919) 549-1400

Underwriters Laboratories Inc. .

March 22, 1994

3M Company Mr. Tony Schommer 207-1W-02 3M Center St. Paul, MN 55144-1000

Our Reference: R9700, 93NK14328

Subject:

Classification Of Type CP-25 WB+ Caulk Fill Material In Through-Penetration Firestop Systems

Dear Mr. Schommer:

This is pursuant to our telephone conversation on March 22, 1994 concerning the above subject.

As discussed, based on the performance of the Type CP-25 WB+ caulk fill material in the series of fire exposure and hose stream tests conducted in June through November, 1993, it was determined that the Type CP-25 WB+ caulk fill material could be used in place of the Type CP-25 WB caulk in each of the 75 through-penetration firestop systems in which the Type CP-25 WB caulk was Classified. Accordingly, we revised each of the 75 firestop systems to include the Type CP-25 WB+ caulk as an alternate to the Type CP-25 WB caulk fill material. We also Classified the Type CP-25 WB+ caulk in 20 new firestop systems.

The 95 firestop systems in which the Type CP-25 WB+ caulk is presently Classified in the 1994 UL Fire Resistance Directory are System Nos. CAJ0004, CAJ0009, CAJ1006, CAJ1007, CAJ1044, CAJ1066, CAJ1092, CAJ1112, CAJ1175, CAJ1176, CAJ2001, CAJ2002, CAJ2003, CAJ2005, CAJ2006, CAJ2013, CAJ2027, CAJ2030, CAJ2040, CAJ2044, CAJ2090, CAJ3005, CAJ3030, CAJ3080, CAJ4003, CAJ5001, CAJ5002, CAJ5003, CAJ5017, CAJ5022, CAJ5024, CAJ5030, CAJ5060, CAJ6001, CAJ7003, CAJ8001, CAJ8013, CBJ1020, CBJ1021, CBJ3016, CBJ3017, CBJ5002, CBJ5003, CBJ5004, CBJ8004, CBJ8005, FA1002, FA2001, FA2002, FA3001, FA5001, FA8001, FC1006, FC2002, FC2007, FC2008, FC2009, FC3007, FC3008, FC5002, WJ1010, WJ2012, WL1001, WL1002, WL1003, WL1016, WL1017, WL1032, WL1037, WL1073, WL2002, WL2003, WL2004, WL2005, WL2006, WL2013, WL2031, WL2032, WL2033, WL2073, WL3001, WL3015, WL3030, WL3032, WL3062, WL4004, WL5001, WL5002, WL5009, WL5010, WL5011, WL5038, WL5039, WL5040 and WL8002.

R9700 Page 2 March 22, 1994

We have completed the chemical identification tests and have included the Type CP-25 WB+ caulk fill material in Follow-Up Service Procedure R9700, Volume 1.

Very truly yours,

J. JOHNSON (Ext. 42649) Senior Engineering Associate Engineering Services, 411B Underwriters Laboratories Inc. 8
November 23, 1992

3M Company Mr. Tony Schommer 207-1W-02 3M Center St. Paul, MN 55144-1000

Our Reference: R9700, 92NK13354

Subject:

Classification Of Type CP-25 WB+ Caulk In

Through-Penetration Firestop Systems

Dear Mr. Schommer:

This is pursuant to our telephone conversation on November 10, 1992 concerning the above subject.

As discussed, we have completed our work under Project 92NK13354, File R9700 and, based on the fire testing conducted to date, we have determined that the Type CP-25 WB+ caulk fill material may be used as an alternate to the Type CP-25 WB caulk in all of the through-penetration firestop systems which presently specify the Type CP-25 WB caulk. Accordingly, we are Classifying the Type CP-25 WB+ caulk fill material in the following Through-Penetration Firestop Systems:

Numerical System	
No.	New Alpha-Alpha-Numeric System No.(s)
61	C-3 T-0001
	C-AJ-0001
62	C-AJ-0002
63	· C-AJ-1002
64	C-AJ-2001, C-AJ-2002, C-AJ-2003, C-AJ-2004,
	C-AJ-2005, F-A-2001
65	C-AJ-3002
66	/ C-BJ-4011
90	C-AJ-2006
91	C-AJ-5001, C-AJ-5002, C-AJ-5003, C-BJ-5002,
	C-BJ-5003
92	C-AJ-0004
93	C-AJ-1006, C-AJ-3005, C-AJ-5030, C-AJ-8001
99	C-AJ-6001
147	W-L-1001, W-L-5001, W-L-5002
148	W-L-2002, W-L-2003, W-L-2004, W-L-2005
	W-L-3001
152	F-A-1002, F-A-5001, F-A-8001
	· · · · · · · · · · · · · · · · · · ·

Page 2 November 23, 1992 R9700

Numerical System No.	New Alpha-Alpha-Numeric System No.(s)
167	F-C-2002
233	C-BJ-1020, C-BJ-3016, C-BJ-5004, C-BJ-8004
318	C-AJ-0009
319	C-AJ-1044, C-AJ-7003
320	C-AJ-3030
321	W-J-1010
322	W-L-1016
394	C-AJ-2027
395	C-AJ-1066, C-AJ-2044, C-AJ-5017, C-AJ-8013
446	F-C-2007
448	C-AJ-2028, C-AJ-2029, C-AJ-2030
451	F-C-2008, F-C-2009
453	F-C-1006
454	F-C-5002
	C-AJ-1092
560	F-A-3001
561	C-AJ-1112
562	C-AJ-2040
566	W-L-5009
567	W-L-5010
568	W-L-5011
	W-L-1037, W-L-2031, W-L-8002
	W-L-3030
572	W-L-2032
573	W-L-2033
590	W-L-3032
592	C-AJ-5024 \

Please note that, since the time of our letter to you dated May 29, 1992, we have found it necessary to change the new alphanumeric system number for Through-Penetration Firestop System No. 66. Rather than System No. C-BJ-4005, the new alphanumeric system number for System No. 66 will be C-BJ-4011.

We have revised Follow-Up Service Procedure R9700, Volume 1, to include the Type CP-25 WB+ caulk fill material. You should be receiving the new Section for inclusion in your copy of Follow-Up Service Procedure R9700, Volume 1 in the near future.

Page 3 November 23, 1992 R9700

Very truly yours,

C. J. JOHNSON (Ext. 2649) Senior Engineering Associate Engineering Services, 411B Reviewed by:

hand a water

RICHARD N. WALKE (Ext. 3084) Engineering Group Leader Engineering Services, 411B Underwriters Laboratories Inc. 8
November 23, 1992

333 Pfingsten Road Northbrook, Iffinois 60062-211 (708) 272-8800 FAX No. (708) 272-8129 MCI Mail No. 254-3343 Cable ULINC NORTHBROOK Telex No. 6502543343

3M Company
Mr. Tony Schommer
207-1W-02 3M Center
St. Paul, MN 55144-1000

Our Reference: R9700, 92NK13354

Subject:

Classification Of Type CP-25 WB+ Caulk In

Through-Penetration Firestop Systems

Dear Mr. Schommer:

This is pursuant to our telephone conversation on November 10, 1992 concerning the above subject.

As discussed, we have completed our work under Project 92NK13354, File R9700 and, based on the fire testing conducted to date, we have determined that the Type CP-25 WB+ caulk fill material may be used as an alternate to the Type CP-25 WB caulk in all of the through-penetration firestop systems which presently specify the Type CP-25 WB caulk. Accordingly, we are Classifying the Type CP-25 WB+ caulk fill material in the following Through-Penetration Firestop Systems:

Numerical	
System	
No.	New Alpha-Alpha-Numeric System No.(s)
61	C-AJ-0001
62	C-AJ-0002
63	C-AJ-1002
64	C-AJ-2001, C-AJ-2002, C-AJ-2003, C-AJ-2004,
	C-AJ-2005, F-A-2001
65	C-AJ-3002
66	Q-BJ-4011
90	C-AJ-2006
91	C-AJ-5001, C-AJ-5002, C-AJ-5003, C-BJ-5002,
	C-BJ-5003
92	C-AJ-0004
93	C-AJ-1006, C-AJ-3005, C-AJ-5030, C-AJ-8001
99	C-AJ-6001
147	W-L-1001, W-L-5001, W-L-5002
	W-L-2002, W-L-2003, W-L-2004, W-L-2005
	W-L-3001
152	F-A-1002, F-A-5001, F-A-8001
	•

333 Pfingsten Road Northbrook, Illinois 60062-2096 (847) 272-8800 FAX No. (847) 272-8129 MCI Mail No. 254-3343 Telex No. 6502543343

March 26, 1997

3M Company Mr. Richard Licht 3M Center Bldg. 207-1W-02 St. Paul, MN 55144-1000

Our Reference: File R9700

Dear Richard:

This is in reference to our phone conversation on February 21, 1996. As discussed, we are revising Electrical Circuit Protective Systems Nos. 2, 3, 4, 6, 7, 8 and 9 to replace the CP-25 N/S and CP-25 S/L caulks with your CP 25WB+ caulk.

Should you have any questions, please feel free to contact us.

Very truly yours,

STEVEN J. HOFFMAN (Ext. 43353)

Staff Engineer

Engineering Services, Dept 411B

41592 RRL